电动汽车慢充和快充接口原理图解析开关电源电路图及原理讲解你了解吗
导语:电动汽车的快速充电系统具有多项优点,如缩短了充电时间,提高了车辆流动效率,并且节省了加电站的停车场面积。充电系统主要分为常规慢充和快速快充两种方式,根据外观大小来看,这两种接口在使用上非常直观,即便是初学者也能轻松操作。一般而言,两个充电口会分别位于车辆的头部和尾部,而某些车型则将这两个接口集成在一起。
快速充电
快速充电采用的是直流(DC)模式进行工作。在这种模式下,需要更大的功率来实现较快的充電時間。这意味着需要建设更多的高速充電站,它们并不要求完全地将動力電池填满,只需提供足够的能量让車輛繼續行駛即可。在20至30分钟内,可以為動力電池填滿50%到80%。地面上的直接输出设备(如地面插座)直接向車輛輸送直流電能進行儲存,而車輛則僅需提供一個通訊端點來與這些設備進行通訊。
快速充電之優點包括較短的耗時、提升運輸效率以及節省停放空間。但其缺陷則包括高昂的製造、安裝及運作成本;大流量對於技術及其方法有高度要求;對於動力電池壽命產生負面影響;存在安全隱患,並且可能對公共供應網造成衝擊,使得供應質量與安全受到影響。
常規慢速充電
此種方法採用交流(AC)方式,由外部網路提供220V民用單相交流供給給內置於車輛中的轉換器,再由轉換器將交流變為直流供給動力蓄光碟盤。此過程通常需要5至8個小時才能完成全額補给。
常規慢速終端之優點包括低廉成本、高度方便性,以及利用晚間低谷時段進行補給以降低成本。此外,這種方式因為力量較小、壓力穩定,因此可以保障動力蓄光碟盤安全並延長其壽命。但它的一個缺陷是耗費大量時間,不足以滿足緊急出行需求。
快取介面
DC+:正極輸入
DC -:負極輸入
PE:保護地球線(PE)
S+:CAN-H通訊信號線
S-:CAN-L通訊信號線
CC1連接檢測原理圖:
通過這張圖片,我們可以知道判斷連接是否正常,可以通過檢查點位來確定,不同壓力的通過不同阻值分壓獲得。
檢測點1S開關 Voltage Plug Status Socket Status
12V Broken Broken Closed
6V Closed Broken Opened
6V Broken Opened Closed
4V Closed Opened
CC2 Vehicle Control Device Connection Confirmation Principle Diagram:
After being turned on, the two resistors divide the voltage to obtain 6 volts, otherwise they obtain 12 volts.
For example, BYD e6 uses a charging system that connects the external power source to the battery through a connector. The connector has a damping feature; it detects whether "CC1" is connected to "PE" with a resistance of 1KΩ; simultaneously, it needs to detect whether the connection between the connector and the power management module is normal.
Slow Charging Interface:
The "cable control box" and "vehicle control device" mutually confirm whether their connections are correct.
Firstly, the cable control box will check point CP for detection point No.4 via CP detection point No.1. If there's no connection, detection point No.4 won't be grounded and can't detect any voltage; if connected properly, detection point No.4 will connect with PE via grounding wire and thus have a voltage of 12 volts after which cable control box will allow switch S1 to turn on PWM or keep at +12 volts if not connected.
Next, vehicle control device will use CC (current sensor) R3 resistor value confirmation test:
Vehicle charger unit sets up car-side charging machine capacity based on communication signal from OBC:
OBC signals occupant status by continuously monitoring current drawn from mains supply before energizing vehicle’s electrical system.
OBC indicates readiness for plug-in by flashing LED indicator in front grille when plugged into mains socket but before ignition switched on.
Thus OBC becomes an essential component in EVs' fast-charging systems as it enables cars to charge more efficiently while ensuring safety standards are maintained throughout all phases of charging process.
In conclusion: why do we need two types of interfaces? Why not unify them?
Well mainly due to quick-charging capabilities that necessitate different configurations depending upon requirements such as varying input/output voltages/currents supported by devices like wall sockets or car chargers (with built-in AC/DC converters).